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Introduction

Cantor proved that ℝ is uncountable in two ways.

First proof: Take 𝑢 : ℕ → ℝ. Construct nested intervals

[𝑥0, 𝑦0] ⊇ [𝑥1, 𝑦1] ⊇ [𝑥2, 𝑦2] ⊇ ⋯

such that [𝑥𝑛, 𝑦𝑛] avoids 𝑢𝑛. Then 𝑢 misses any point in the intersection, so is not surjective.
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Introduction

Construction: cut [𝑥𝑛, 𝑦𝑛] in three equal parts [𝑥𝑛, 𝑎𝑛], [𝑎𝑛, 𝑏𝑛], [𝑏𝑛, 𝑦𝑛] and set

[𝑥𝑛+1, 𝑦𝑛+1] = {[𝑥𝑛, 𝑎𝑛] if 𝑢𝑛 > 𝑎𝑛
[𝑏𝑛, 𝑦𝑛] if 𝑢𝑛 < 𝑏𝑛

2 / 16



Introduction

Construction: cut [𝑥𝑛, 𝑦𝑛] in three equal parts [𝑥𝑛, 𝑎𝑛], [𝑎𝑛, 𝑏𝑛], [𝑏𝑛, 𝑦𝑛] and set

[𝑥𝑛+1, 𝑦𝑛+1] = {[𝑥𝑛, 𝑎𝑛] if 𝑢𝑛 > 𝑎𝑛
[𝑏𝑛, 𝑦𝑛] if 𝑢𝑛 < 𝑏𝑛

Constructively, we can obtain “if 𝑎𝑛 < 𝑏𝑛 then 𝑢𝑛 > 𝑎𝑛 or 𝑢𝑛 < 𝑏𝑛”, but “𝑢𝑛 > 𝑎𝑛 or 

𝑢𝑛 ≤ 𝑎𝑛” is the analytic limited principle of omniscience, a constructive taboo.

2 / 16



Introduction

Construction: cut [𝑥𝑛, 𝑦𝑛] in three equal parts [𝑥𝑛, 𝑎𝑛], [𝑎𝑛, 𝑏𝑛], [𝑏𝑛, 𝑦𝑛] and set

[𝑥𝑛+1, 𝑦𝑛+1] = {[𝑥𝑛, 𝑎𝑛] if 𝑢𝑛 > 𝑎𝑛
[𝑏𝑛, 𝑦𝑛] if 𝑢𝑛 < 𝑏𝑛

Constructively, we can obtain “if 𝑎𝑛 < 𝑏𝑛 then 𝑢𝑛 > 𝑎𝑛 or 𝑢𝑛 < 𝑏𝑛”, but “𝑢𝑛 > 𝑎𝑛 or 

𝑢𝑛 ≤ 𝑎𝑛” is the analytic limited principle of omniscience, a constructive taboo.

Alternatively, use dependent choice: If for all 𝑠 there exists 𝑠′ such that 𝑅(𝑠, 𝑠′) then there is 

a sequence (𝑠𝑛) such that 𝑅(𝑠𝑛, 𝑠𝑛+1).
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Alternatively, use dependent choice: If for all 𝑠 there exists 𝑠′ such that 𝑅(𝑠, 𝑠′) then there is 

a sequence (𝑠𝑛) such that 𝑅(𝑠𝑛, 𝑠𝑛+1).

Or, by making all choices in advance, just countable choice: If for all 𝑛 ∈ ℕ there exists 𝑠 such 

that 𝑅(𝑛, 𝑠) then there exists 𝑓  such that 𝑅(𝑛, 𝑓(𝑛)).
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Introduction

Second proof: Take 𝑢 : ℕ → 2ℕ. The sequence 𝑛 ↦ flip(𝑢𝑛(𝑛)) is not in the image of 𝑢.

Constructively valid, but proves that 2ℕ is uncountable, a different theorem!

Building the decimal expansion of a real requires the analytic limited principle of omniscience 

“𝑥 ≥ 𝑦 or 𝑥 < 𝑦” again.
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Which flavor of constructive mathematics?

Technically: the internal language of an “elementary 1-topos with natural numbers object”. 

Traditionally higher-order logic, but can model extensional type theory as well.
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Practically speaking:

• Constructive

• Impredicative: type Ω of truth values, powerset of 𝐴 is Ω𝐴

• Quotients and propositional truncation

• Equality reflection, function extensionality, propositional extensionality, unique choice

Terminological points:

• Existence means mere existence (∃ not Σ).

• A set 𝑋 is inhabited when there exists an element in it (‖𝑋‖ ≡ ∃𝑥 : 𝑋,⊤).

• A truth value 𝑝 ∈ Ω is decidable when 𝑝 ∨ ¬𝑝 (→ decidable subset, decidable equality), and 

classical when ¬¬𝑝 ⇒ 𝑝.
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Countability in constructive mathematics

𝑋 is countable when there is a surjection ℕ → 𝑋 + 1.

If a countable set surjects into 𝑋 then 𝑋 is countable.

A countable union ⋃𝑖∈𝐼 𝐴𝑖 can be rewritten as ⋃𝑛∈ℕ 𝐵𝑖.
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A countable union ⋃𝑖∈𝐼 𝐴𝑖 can be rewritten as ⋃𝑛∈ℕ 𝐵𝑖.

𝑋 is subcountable when there is an injection 𝑋 → ℕ.

A countable set may contain an uncountable subset! Countability and subcountability are 

unrelated constructively.

Bauer previously exhibited a model where ℝ and even 2ℕ are subcountable.
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The real numbers in constructive mathematics

The construction of the field ℚ is unproblematic. It is countable and has decidable equality and 

ordering.

Three constructions of ℝ from ℚ:

• Cauchy reals: using Cauchy sequences to “add missing limits” in ℚ. Sub-variants: quotient in 

one go, or add sequences and quotient them at the same time, quotient-inductive-inductively.

• Dedekind reals: next slide.

• MacNeille reals: a different order completion construction. Always uncountable, but “𝑥 < 1 

or 𝑥 > 0” not provable.
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The construction of the field ℚ is unproblematic. It is countable and has decidable equality and 

ordering.

Three constructions of ℝ from ℚ:

• Cauchy reals: using Cauchy sequences to “add missing limits” in ℚ. Sub-variants: quotient in 

one go, or add sequences and quotient them at the same time, quotient-inductive-inductively.

• Dedekind reals: next slide.

• MacNeille reals: a different order completion construction. Always uncountable, but “𝑥 < 1 

or 𝑥 > 0” not provable.

Even classically, it is interesting to consider all three because they generalize in different ways: 

Cauchy reals → 𝑝-adic numbers, Dedekind reals → surreal numbers, MacNeille reals → 

Dedekind-MacNeille completion of a poset.
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The Dedekind reals

Intuition: Represent 𝑟 ∈ ℝ by 𝐿 ≔ {𝑥 ∈ ℚ | 𝑥 < 𝑟} and 𝑈 ≔ {𝑥 ∈ ℚ | 𝑥 > 𝑟}.

A Dedekind cut is a pair (𝐿, 𝑈) such that:

• 𝐿 is inhabited, i.e., ‖𝐿‖
• 𝐿 is downwards-closed, i.e., for all 𝑦 ∈ ℚ, if there exists 𝑥 ∈ 𝐿 such that 𝑦 < 𝑥, then 𝑦 ∈ 𝐿
• 𝐿 is open, which in view of downwards-closedness is equivalent to the converse: if 𝑦 ∈ 𝐿 

then there exists 𝑥 ∈ 𝐿 such that 𝑦 < 𝑥
• Symmetrically, 𝑈  is inhabited and 𝑦 ∈ 𝑈 ⇔ (∃𝑥 ∈ 𝑈, 𝑥 < 𝑦)
• 𝐿 is below 𝑈 : if 𝑥 ∈ 𝐿 and 𝑦 ∈ 𝑈  then 𝑥 < 𝑦
• 𝐿 and 𝑈  are located: if 𝑥 < 𝑦 then 𝑥 ∈ 𝐿 or 𝑦 ∈ 𝑈
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Realizability

The counter-model is a variant of realizability models.

Curry-Howard: A proof is a program… 

Realizability: A proof is a program… 
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Curry-Howard: A proof is a program… in an expressive typed programming language with 

propositions-as-types

Realizability: A proof is a program… in a model of computation that may be completely untyped

A “Curry-Howard model” is just a syntactic model/term model.

A realizability model is more complicated: sets with computational representations, maps 

which have a computational counterpart

Realizability was invented by Kleene in 1945, ~25 years earlier than Curry-Howard. Variants: 

Dialectica (Gödel), linear realizability, classical realizability, …

Realizability can work with a very general class of models of computation: models of a variant 

of the SKI combinator calculus where application is a partial operation.
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Partial combinatory algebras

Let 𝐴 be a set with a partial operation 𝐴 × 𝐴 ⇢ 𝐴. An expression is, inductively, a variable, a 

constant or the application of an expression to an expression.

𝐴 is a partial combinatory algebra when for all expression 𝑒 in variables 𝑥0,…, 𝑥𝑛, there exists 

𝑎 ∈ 𝐴 such that for all 𝑎0,…, 𝑎𝑛 ∈ 𝐴:

1. 𝑎𝑎0…𝑎𝑛−1𝑎𝑛 ≃ 𝑒[𝑎0/𝑥0,…, 𝑎𝑛/𝑥𝑛] where ≃ means one is defined iff the other is, and then 

they have the same value

2. 𝑎𝑎0…𝑎𝑛−1 is defined
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gives a defined function if we apply it with fewer arguments.
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they have the same value

2. 𝑎𝑎0…𝑎𝑛−1 is defined

Reason for (2): 𝑝 ∧ 𝑞 ⇒ 𝑟 implies 𝑝 ⇒ 𝑞 ⇒ 𝑟 intuitionistically, so we need currification that 

gives a defined function if we apply it with fewer arguments.

For SKI fans, this is equivalent to having 𝑘, 𝑠 ∈ 𝐴 such that 𝑘𝑎𝑏 = 𝑎, 𝑠𝑎𝑏𝑐 = 𝑎𝑐(𝑏𝑐) and 𝑠𝑎𝑏 

defined.
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Examples of partial combinatory algebras

Fundamental example: “Kleene’s first algebra” 𝒦1 is ℕ — Gödel codes of Turing machines — 

with application by execution of Turing machines

More pcas:

• Untyped λ-terms

• Better: every model of the untyped λ-calculus

• Infinite-time Turing machines, used to make ℝ and 2ℕ subcountable

• Turing machines with a fixed oracle
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The maze of higher-order computability

Giving a computational interpretation to higher-order logic involves some choices.

What is a computable function ℕ → ℕ? Answered by the pca, e.g., Church-Turing model.

What is a computable function 2ℕ → ℕ? Several ideas:
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• Same, but the output must only depend on 𝑓 , not on the program (→ function extensionality)

• A Turing machine with an oracle

• A Turing machine with an oracle, but only required to terminate provided the oracle is 

computable (not equivalent!!)

What is a computable function (2ℕ → ℕ) → ℕ?
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Assemblies

The primary object in realizability is an assembly: A set 𝑋 together with a realizability relation 

⊩ between the pca 𝐴 and 𝑋, where 𝑎 ⊩ 𝑥 is read “𝑎 realizes 𝑥”, such that every 𝑥 is realized 

by some 𝑎.

Basic assembly: ℕ where ⌈𝑛⌉ realizes 𝑛.
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are realized, where 𝑎 realizes 𝑓  when for every 𝑥 and for every 𝑏 realizing 𝑥, the application 
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𝑎𝑏 is defined and realizes 𝑓(𝑥).

Example:

• ℕ → ℕ is the assembly of computable functions; each 𝑓  is realized by the Gödel codes of 

Turing machines computing 𝑓 .

• Elements of 2ℕ → ℕ take computable bit sequences to natural numbers; each 𝑓  is realized by 

𝑎 when 𝑎 takes every program computing a bit sequence 𝑢 to 𝑓(𝑢) (no termination guarantee 

if input does not compute a bit sequence)

The category of assemblies is quite well-behaved: it has finite limits, finite colimits and 

exponentials, and it is regular.

But it is not a topos because we lack a notion of truth values.
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Realizability toposes

The realizability topos over a pca 𝐴 is obtained by a more sophisticated construction with 

setoid-like objects.

Intuition: The object of truth values Ω is 𝒫(𝐴), and to realize equality of truth values 𝑝, 𝑞 ⊆ 𝐴, 

we must provide a realizer that converts an element of 𝑝 to an element of 𝑞 and vice-versa.

14 / 16



Realizability toposes

The realizability topos over a pca 𝐴 is obtained by a more sophisticated construction with 

setoid-like objects.

Intuition: The object of truth values Ω is 𝒫(𝐴), and to realize equality of truth values 𝑝, 𝑞 ⊆ 𝐴, 

we must provide a realizer that converts an element of 𝑝 to an element of 𝑞 and vice-versa.

The effective topos is the realizability topos over 𝒦1.

• Internal Church Thesis: every function ℕ → ℕ is computable

• Failure of excluded middle

• Failure of analytic limited principle of omniscience

• All real functions are continuous

• Any non-computably-enumerable subset of ℕ is subcountable but uncountable

• An immune set is neither finite nor infinite (injection from ℕ)

• But countable choice!
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Parameterized realizability toposes

If we “adjoin an oracle” to be able to compute a new sequence, diagonalization kicks in and 

gives us a real not in the sequence.

Idea: introduce parameters into the pca.

Application: oracle Turing machines but parameterized by the oracle.

A function 𝑋 → 𝑌  between assemblies is realized by those 𝑎 ∈ 𝐴 such that for all 𝑥, for all 𝑏 

realizing 𝑥, and for all parameter 𝑝, the application 𝑎 ⋅𝑝 𝑏 is defined and realizes 𝑓(𝑥).
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The Miller sequence construction

Notion of oracle representing a real when it encodes a sequence of rationals rapidly converging 

to the real (rapidly = specified modulus of convergence). Oracle representing a sequence of 

reals.

Miller sequence: A sequence 𝜇 : ℕ → [0, 1] such that if 𝑥 is a real and 𝑛 is a program repre

senting 𝑥 when given any oracle representing 𝜇, then actually 𝑥 appears in 𝜇.

Construction uses Kakutani’s fixed point theorem, a generalization of Brouwer’s fixed point 

theorem. Very classical: in the effective topos, there exists a map from the unit square to itself 

that moves every point by a positive distance.

In the parameterized realizabiility topos where oracles are those which represent a given Miller 

sequence, the reals are countable!
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