The countable reals

Exposition by Jean Abou Samra (Eötvös Loránd University, Budapest) of work by Andrej Bauer and James E. Hanson: *The countable reals*, <u>arXiv:2404.01256</u>

November 10th 2025

Cantor proved that \mathbb{R} is uncountable in two ways.

First proof: Take $u: \mathbb{N} \to \mathbb{R}$. Construct nested intervals

$$[x_0,y_0]\supseteq [x_1,y_1]\supseteq [x_2,y_2]\supseteq\cdots$$

such that $[x_n, y_n]$ avoids u_n . Then u misses any point in the intersection, so is not surjective.

Construction: cut $[x_n, y_n]$ in three equal parts $[x_n, a_n], [a_n, b_n], [b_n, y_n]$ and set

$$[x_{n+1}, y_{n+1}] = \begin{cases} [x_n, a_n] & \text{if } u_n > a_n \\ [b_n, y_n] & \text{if } u_n < b_n \end{cases}$$

Construction: cut $[x_n, y_n]$ in three equal parts $[x_n, a_n], [a_n, b_n], [b_n, y_n]$ and set

$$[x_{n+1}, y_{n+1}] = \begin{cases} [x_n, a_n] & \text{if } u_n > a_n \\ [b_n, y_n] & \text{if } u_n < b_n \end{cases}$$

Constructively, we can obtain "if $a_n < b_n$ then $u_n > a_n$ or $u_n < b_n$ ", but " $u_n > a_n$ or $u_n \le a_n$ " is the analytic limited principle of omniscience, a constructive taboo.

Construction: cut $[x_n, y_n]$ in three equal parts $[x_n, a_n], [a_n, b_n], [b_n, y_n]$ and set

$$[x_{n+1}, y_{n+1}] = \begin{cases} [x_n, a_n] & \text{if } u_n > a_n \\ [b_n, y_n] & \text{if } u_n < b_n \end{cases}$$

Constructively, we can obtain "if $a_n < b_n$ then $u_n > a_n$ or $u_n < b_n$ ", but " $u_n > a_n$ or $u_n \le a_n$ " is the analytic limited principle of omniscience, a constructive taboo.

Alternatively, use dependent choice: If for all s there exists s' such that R(s,s') then there is a sequence (s_n) such that $R(s_n,s_{n+1})$.

Construction: cut $[x_n, y_n]$ in three equal parts $[x_n, a_n], [a_n, b_n], [b_n, y_n]$ and set

$$[x_{n+1}, y_{n+1}] = \begin{cases} [x_n, a_n] & \text{if } u_n > a_n \\ [b_n, y_n] & \text{if } u_n < b_n \end{cases}$$

Constructively, we can obtain "if $a_n < b_n$ then $u_n > a_n$ or $u_n < b_n$ ", but " $u_n > a_n$ or $u_n \le a_n$ " is the analytic limited principle of omniscience, a constructive taboo.

Alternatively, use dependent choice: If for all s there exists s' such that R(s, s') then there is a sequence (s_n) such that $R(s_n, s_{n+1})$.

Or, by making all choices in advance, just countable choice: If for all $n \in \mathbb{N}$ there exists s such that R(n, s) then there exists f such that R(n, f(n)).

Second proof: Take $u:\mathbb{N}\to 2^{\mathbb{N}}$. The sequence $n\mapsto \mathrm{flip}(u_n(n))$ is not in the image of u.

Constructively valid, but proves that $2^{\mathbb{N}}$ is uncountable, a different theorem!

Building the decimal expansion of a real requires the analytic limited principle of omniscience " $x \ge y$ or x < y" again.

Which flavor of constructive mathematics?

Technically: the internal language of an "elementary 1-topos with natural numbers object". Traditionally higher-order logic, but can model extensional type theory as well.

Which flavor of constructive mathematics?

Technically: the internal language of an "elementary 1-topos with natural numbers object". Traditionally higher-order logic, but can model extensional type theory as well.

Practically speaking:

- Constructive
- Impredicative: type Ω of truth values, powerset of A is Ω^A
- Quotients and propositional truncation
- Equality reflection, function extensionality, propositional extensionality, unique choice

Which flavor of constructive mathematics?

Technically: the internal language of an "elementary 1-topos with natural numbers object". Traditionally higher-order logic, but can model extensional type theory as well.

Practically speaking:

- Constructive
- Impredicative: type Ω of truth values, powerset of A is Ω^A
- Quotients and propositional truncation
- Equality reflection, function extensionality, propositional extensionality, unique choice

Terminological points:

- Existence means mere existence (\exists not Σ).
- A set X is **inhabited** when there exists an element in it ($||X|| \equiv \exists x : X, \top$).
- A truth value $p \in \Omega$ is **decidable** when $p \vee \neg p$ (\rightarrow decidable subset, decidable equality), and **classical** when $\neg \neg p \Rightarrow p$.

Countability in constructive mathematics

X is **countable** when there is a surjection $\mathbb{N} \to X + 1$.

If a countable set surjects into X then X is countable.

A countable union $\bigcup_{i \in I} A_i$ can be rewritten as $\bigcup_{n \in \mathbb{N}} B_i$.

Countability in constructive mathematics

X is **countable** when there is a surjection $\mathbb{N} \to X + 1$.

If a countable set surjects into X then X is countable.

A countable union $\bigcup_{i \in I} A_i$ can be rewritten as $\bigcup_{n \in \mathbb{N}} B_i$.

X is **subcountable** when there is an injection $X \to \mathbb{N}$.

A countable set may contain an uncountable subset! Countability and subcountability are unrelated constructively.

Countability in constructive mathematics

X is **countable** when there is a surjection $\mathbb{N} \to X + 1$.

If a countable set surjects into X then X is countable.

A countable union $\bigcup_{i \in I} A_i$ can be rewritten as $\bigcup_{n \in \mathbb{N}} B_i$.

X is **subcountable** when there is an injection $X \to \mathbb{N}$.

A countable set may contain an uncountable subset! Countability and subcountability are unrelated constructively.

Bauer previously exhibited a model where $\mathbb R$ and even $2^{\mathbb N}$ are subcountable.

The real numbers in constructive mathematics

The construction of the field \mathbb{Q} is unproblematic. It is countable and has decidable equality and ordering.

Three constructions of \mathbb{R} from \mathbb{Q} :

- Cauchy reals: using Cauchy sequences to "add missing limits" in Q. Sub-variants: quotient in one go, or add sequences and quotient them at the same time, quotient-inductive-inductively.
- Dedekind reals: next slide.
- MacNeille reals: a different order completion construction. Always uncountable, but "x < 1 or x > 0" not provable.

The real numbers in constructive mathematics

The construction of the field \mathbb{Q} is unproblematic. It is countable and has decidable equality and ordering.

Three constructions of \mathbb{R} from \mathbb{Q} :

- Cauchy reals: using Cauchy sequences to "add missing limits" in Q. Sub-variants: quotient in one go, or add sequences and quotient them at the same time, quotient-inductive-inductively.
- Dedekind reals: next slide.
- MacNeille reals: a different order completion construction. Always uncountable, but "x < 1 or x > 0" not provable.

Even classically, it is interesting to consider all three because they generalize in different ways: Cauchy reals \rightarrow *p*-adic numbers, Dedekind reals \rightarrow surreal numbers, MacNeille reals \rightarrow Dedekind-MacNeille completion of a poset.

The Dedekind reals

Intuition: Represent $r \in \mathbb{R}$ by $L := \{x \in \mathbb{Q} \mid x < r\}$ and $U := \{x \in \mathbb{Q} \mid x > r\}$.

A **Dedekind cut** is a pair (L, U) such that:

- L is inhabited, i.e., ||L||
- L is downwards-closed, i.e., for all $y \in \mathbb{Q}$, if there exists $x \in L$ such that y < x, then $y \in L$
- L is open, which in view of downwards-closedness is equivalent to the converse: if $y \in L$ then there exists $x \in L$ such that y < x
- Symmetrically, U is inhabited and $y \in U \Leftrightarrow (\exists x \in U, x < y)$
- L is below U: if $x \in L$ and $y \in U$ then x < y
- L and U are located: if x < y then $x \in L$ or $y \in U$

The counter-model is a variant of realizability models.

Curry-Howard: A proof is a program...

Realizability: A proof is a program...

The counter-model is a variant of realizability models.

Curry-Howard: A proof is a program... in an expressive typed programming language with propositions-as-types

Realizability: A proof is a program... in a model of computation that may be completely untyped

The counter-model is a variant of realizability models.

Curry-Howard: A proof is a program... in an expressive typed programming language with propositions-as-types

Realizability: A proof is a program... in a model of computation that may be completely untyped

A "Curry-Howard model" is just a syntactic model/term model.

A realizability model is more complicated: sets with computational representations, maps which have a computational counterpart

Realizability was invented by Kleene in 1945, ~25 years earlier than Curry-Howard. Variants: Dialectica (Gödel), linear realizability, classical realizability, ...

The counter-model is a variant of realizability models.

Curry-Howard: A proof is a program... in an expressive typed programming language with propositions-as-types

Realizability: A proof is a program... in a model of computation that may be completely untyped

A "Curry-Howard model" is just a syntactic model/term model.

A realizability model is more complicated: sets with computational representations, maps which have a computational counterpart

Realizability was invented by Kleene in 1945, ~25 years earlier than Curry-Howard. Variants: Dialectica (Gödel), linear realizability, classical realizability, ...

Realizability can work with a very general class of models of computation: models of a variant of the SKI combinator calculus where application is a partial operation.

Partial combinatory algebras

Let A be a set with a partial operation $A \times A \rightarrow A$. An expression is, inductively, a variable, a constant or the application of an expression to an expression.

A is a partial combinatory algebra when for all expression e in variables $x_0, ..., x_n$, there exists $a \in A$ such that for all $a_0, ..., a_n \in A$:

- 1. $aa_0...a_{n-1}a_n \simeq e[a_0/x_0,...,a_n/x_n]$ where \simeq means one is defined iff the other is, and then they have the same value
- 2. $aa_0...a_{n-1}$ is defined

Partial combinatory algebras

Let A be a set with a partial operation $A \times A \rightarrow A$. An expression is, inductively, a variable, a constant or the application of an expression to an expression.

A is a partial combinatory algebra when for all expression e in variables $x_0,...,x_n$, there exists $a\in A$ such that for all $a_0,...,a_n\in A$:

- 1. $aa_0...a_{n-1}a_n \simeq e[a_0/x_0,...,a_n/x_n]$ where \simeq means one is defined iff the other is, and then they have the same value
- 2. $aa_0...a_{n-1}$ is defined

Reason for (2): $p \land q \Rightarrow r$ implies $p \Rightarrow q \Rightarrow r$ intuitionistically, so we need currification that gives a defined function if we apply it with fewer arguments.

Partial combinatory algebras

Let A be a set with a partial operation $A \times A \rightarrow A$. An expression is, inductively, a variable, a constant or the application of an expression to an expression.

A is a partial combinatory algebra when for all expression e in variables $x_0,...,x_n$, there exists $a \in A$ such that for all $a_0,...,a_n \in A$:

- 1. $aa_0...a_{n-1}a_n \simeq e[a_0/x_0,...,a_n/x_n]$ where \simeq means one is defined iff the other is, and then they have the same value
- 2. $aa_0...a_{n-1}$ is defined

Reason for (2): $p \land q \Rightarrow r$ implies $p \Rightarrow q \Rightarrow r$ intuitionistically, so we need currification that gives a defined function if we apply it with fewer arguments.

For SKI fans, this is equivalent to having $k, s \in A$ such that kab = a, sabc = ac(bc) and sab defined.

Examples of partial combinatory algebras

Fundamental example: "Kleene's first algebra" \mathcal{K}_1 is \mathbb{N} — Gödel codes of Turing machines — with application by execution of Turing machines

More pcas:

- Untyped λ-terms
- Better: every model of the untyped λ -calculus
- Infinite-time Turing machines, used to make $\mathbb R$ and $2^{\mathbb N}$ subcountable
- Turing machines with a fixed oracle

Giving a computational interpretation to higher-order logic involves some choices.

What is a computable function $\mathbb{N} \to \mathbb{N}$? Answered by the pca, e.g., Church-Turing model.

What is a computable function $2^{\mathbb{N}} \to \mathbb{N}$? Several ideas:

Giving a computational interpretation to higher-order logic involves some choices.

What is a computable function $\mathbb{N} \to \mathbb{N}$? Answered by the pca, e.g., Church-Turing model.

What is a computable function $2^{\mathbb{N}} \to \mathbb{N}$? Several ideas:

- A Turing machine which receives a program and is guaranteed to terminate provided that the program defines a total function $f: \mathbb{N} \to 2$
- Same, but the output must only depend on f, not on the program (\rightarrow function extensionality)

Giving a computational interpretation to higher-order logic involves some choices.

What is a computable function $\mathbb{N} \to \mathbb{N}$? Answered by the pca, e.g., Church-Turing model.

What is a computable function $2^{\mathbb{N}} \to \mathbb{N}$? Several ideas:

- A Turing machine which receives a program and is guaranteed to terminate provided that the program defines a total function $f: \mathbb{N} \to 2$
- Same, but the output must only depend on f, not on the program (\rightarrow function extensionality)
- A Turing machine with an oracle
- A Turing machine with an oracle, but only required to terminate provided the oracle is computable (not equivalent!!)

Giving a computational interpretation to higher-order logic involves some choices.

What is a computable function $\mathbb{N} \to \mathbb{N}$? Answered by the pca, e.g., Church-Turing model.

What is a computable function $2^{\mathbb{N}} \to \mathbb{N}$? Several ideas:

- A Turing machine which receives a program and is guaranteed to terminate provided that the program defines a total function $f: \mathbb{N} \to 2$
- Same, but the output must only depend on f, not on the program (\rightarrow function extensionality)
- A Turing machine with an oracle
- A Turing machine with an oracle, but only required to terminate provided the oracle is computable (not equivalent!!)

What is a computable function $(2^{\mathbb{N}} \to \mathbb{N}) \to \mathbb{N}$?

The primary object in realizability is an assembly: A set X together with a realizability relation \Vdash between the pca A and X, where $a \Vdash x$ is read "a realizes x", such that every x is realized by some a.

Basic assembly: \mathbb{N} where $\lceil n \rceil$ realizes n.

In the category of assemblies over A, the exponential X^Y is made of functions $Y \to X$ which are realized, where a realizes f when for every x and for every b realizing x, the application ab is defined and realizes f(x).

In the category of assemblies over A, the exponential X^Y is made of functions $Y \to X$ which are realized, where a realizes f when for every x and for every b realizing x, the application ab is defined and realizes f(x).

Example:

- $\mathbb{N} \to \mathbb{N}$ is the assembly of computable functions; each f is realized by the Gödel codes of Turing machines computing f.
- Elements of $2^{\mathbb{N}} \to \mathbb{N}$ take computable bit sequences to natural numbers; each f is realized by a when a takes every program computing a bit sequence u to f(u) (no termination guarantee if input does not compute a bit sequence)

In the category of assemblies over A, the exponential X^Y is made of functions $Y \to X$ which are realized, where a realizes f when for every x and for every b realizing x, the application ab is defined and realizes f(x).

Example:

- $\mathbb{N} \to \mathbb{N}$ is the assembly of computable functions; each f is realized by the Gödel codes of Turing machines computing f.
- Elements of $2^{\mathbb{N}} \to \mathbb{N}$ take computable bit sequences to natural numbers; each f is realized by a when a takes every program computing a bit sequence u to f(u) (no termination guarantee if input does not compute a bit sequence)

The category of assemblies is quite well-behaved: it has finite limits, finite colimits and exponentials, and it is regular.

But it is not a topos because we lack a notion of truth values.

Realizability toposes

The realizability topos over a pca A is obtained by a more sophisticated construction with setoid-like objects.

Intuition: The object of truth values Ω is $\mathcal{P}(A)$, and to realize equality of truth values $p, q \subseteq A$, we must provide a realizer that converts an element of p to an element of q and vice-versa.

Realizability toposes

The realizability topos over a pca A is obtained by a more sophisticated construction with setoid-like objects.

Intuition: The object of truth values Ω is $\mathcal{P}(A)$, and to realize equality of truth values $p, q \subseteq A$, we must provide a realizer that converts an element of p to an element of q and vice-versa.

The effective topos is the realizability topos over \mathcal{K}_1 .

- Internal Church Thesis: every function $\mathbb{N} \to \mathbb{N}$ is computable
- Failure of excluded middle
- Failure of analytic limited principle of omniscience
- All real functions are continuous
- Any non-computably-enumerable subset of $\mathbb N$ is subcountable but uncountable
- An immune set is neither finite nor infinite (injection from \mathbb{N})
- But countable choice!

Parameterized realizability toposes

If we "adjoin an oracle" to be able to compute a new sequence, diagonalization kicks in and gives us a real not in the sequence.

Idea: introduce parameters into the pca.

Application: oracle Turing machines but parameterized by the oracle.

A function $X \to Y$ between assemblies is realized by those $a \in A$ such that for all x, for all b realizing x, and for all parameter p, the application $a \cdot_p b$ is defined and realizes f(x).

The Miller sequence construction

Notion of oracle representing a real when it encodes a sequence of rationals rapidly converging to the real (rapidly = specified modulus of convergence). Oracle representing a sequence of reals.

Miller sequence: A sequence $\mu : \mathbb{N} \to [0,1]$ such that if x is a real and n is a program representing x when given any oracle representing μ , then actually x appears in μ .

Construction uses Kakutani's fixed point theorem, a generalization of Brouwer's fixed point theorem. Very classical: in the effective topos, there exists a map from the unit square to itself that moves every point by a positive distance.

In the parameterized realizability topos where oracles are those which represent a given Miller sequence, the reals are countable!